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Abstract—A dual pathway from readily available 2-allyl-2-carboethoxycycloalkanones 1 provides a new facile stereoselective syn-
thesis either of functionalized spiro ketolactones 4 or of ring enlarged lactones 7 in one-step. Thus, iodination of 5–8-membered
2-allyl-2-carboethoxycycloalkanones 1a–d led, in excellent yields, to spiro ketolactones 4a–d, respectively, as single stereoisomers.
On the other hand, iodination of 1a–d under alkoxy radical fragmentation conditions via incipient hemiketals produced the
8-, 9-, 10-, or 11-membered, three-atom ring enlarged, poly-functionalized lactones 7a–c as two stereoisomers and 8 as a single
isomer.
� 2006 Elsevier Ltd. All rights reserved.
Many medium- and large-ring lactones (macrolides) are
found among bioactive natural products, yet the synthe-
sis of such multifunctional molecules by ring closure
presents a synthetic challenge.1 Hence, efficient synthe-
ses based on ring enlargement are still desirable. Fur-
thermore, new routes to spirolactones also maintain
continued interest.2

Recently,3 we described a ring expansion method by uti-
lizing alkoxy radical fragmentation4 (ARF) of hemiketals
derived from [2.3.1] and [3.3.1] bicyclic c-hydroxy ke-
tones. The latter were prepared from cyclopentanone or
cyclohexanone and led to the synthesis of 7- or 8-mem-
bered rings containing several functional groups. This
2-carbon ring expansion was possible because of the
favorable equilibrium between the bicyclic c-hydroxy
ketones and their hemiketal isomers. By contrast, analo-
gous 9- and 10-membered rings derived in an analogous
manner from cycloheptanone and cyclooctanone via
bicyclic c-hydroxy ketones were not accessible by this
route. We demonstrated3 by MM calculations that while
for the 5- and 6-membered ring bicyclic ketones, the
energy differences between the hydroxy ketone and
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hemiketal were small, the bicyclic hemiketals derived
from 7- and 8-membered rings were much less stable
(by at least 6 kcal/mol) than their corresponding hydroxy
ketone isomers. This suggested the requirement for hem-
iketal formation from these bicyclic hydroxyketones in
order for them to undergo alkoxy radical fragmentation.

With a view to general routes toward medium- and
large-sized rings, we wanted to ascertain whether ring
expansions similar to those in the bicyclic system were
feasible in simple c-hydroxycyclic ketones. Hence, we
required a shorter route to hemiketals than the route3

that had led to the bicyclic system. First, we opted for
the presence of an a-carboethoxy group in cyclic ke-
tones, since this would not only facilitate monoalkyl-
ation but would also stabilize a free radical during
alkoxy radical fragmentation and possibly provide an
entry into spirolactones. Second, it was anticipated that
halogenation of allylcyclohexanone5 1b would lead, via
a three-membered ring iodonium or bromonium ion
intermediate, to hemiketal 2b and hence by ARF to lac-
tones 7b via 3-atom ring enlargement. In two elegant
communications, Posner et al.6 recently reported the
viability of ring enlargements from 4-silylated-2-allylcy-
cloalkanones by epoxidation6a or by nucleophilic attack
of enolates on small ring ethers.6b The epoxidation pro-
ceeded with carbonyl participation to produce hemike-
tals in fair yields, which underwent ring expansion
analogous to the conversion of 2 to 7.
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Indeed, we found that iodination of 2-allyl-2-carboeth-
oxycyclohexanone 1b, readily obtained5 by allylation
of the anion of 2-carboethoxycyclohexanone, led upon
work-up to hemiketal 2b, via ketone attack on an incip-
ient iodonium ion. In turn hemiketal 2b, formed as two
diastereomers, underwent ARF in the presence of
diacetoxy iodobenzene (DIB), iodine, and light4 to a 9-
membered ring lactone, 7b, in good yield.

However, attempts to isolate hemiketals from analogous
5-, 7- or 8-membered cyclic ketones were unsuccessful
and led instead to spirolactones in very high yields. In
the event, iodination of 2-allyl-2-carboethoxycycloocta-
none7 1d produced the spiro keto lactone 4d as a single
isomer in excellent yield (Scheme 1). Indeed, MM calcu-
lations again indicated a large difference in energy be-
tween the hemiketal and the c-hydroxy ketone in favor
of the latter in the cyclooctanone, but not in the cyclo-
hexanone case. Similarly, iodination of allyl ketones
1a,c led to spirolactones 4a,c in high yields and no hemi-
ketals were observed. A possible pathway for the forma-
tion of spirolactones 4 involves carbonyl participation
with the formation of hemiketals 2, formed on work-
up. This would be followed by equilibration to hydroxy
ketone 3 and ring closure to spirolactone 4, even before
the ARF reaction was attempted. An indication of ini-
tial carbonyl participation was provided8a by the forma-
tion of fused furan 5 on bromination of 2-allyl-2-
carboethoxycycloheptanone8b 1c, while the use of excess
bromine led to the isolation of spirolactone 6 (Scheme 2).

It occurred to us that since halogenation of allylcycloal-
kanones 1 affords the possibility of initially generating
O
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hemiketals rather than c-hydroxy ketones, it may still
be possible to divert any unstable hemiketals 2 to under-
go ring expansion via radical fragmentation. Indeed,
photochemical reaction of allylcyclopentanone9 1a with
iodine in the presence of DIB and 1 equiv of water, to
facilitate hemiketal formation from an initially formed
a-halo ether, led to isolation of the 8-membered ring lac-
tone 7a. Thus, 1a leads directly to spirolactone10 4a in
high yield by reaction with a halogen, while in the pres-
ence of DIB–H2O–hm the reaction can be diverted to
produce 3-atom ring enlargement to lactone11 7a. Simi-
lar results were obtained for ring expansion of 6- to 9-
membered rings and 7- to 10-membered rings (Scheme
3). Here too hemiketals, formed via carbonyl participa-
tion, are likely intermediates. In fact, iodination of
8-membered ring 1d under ARF conditions gave a
complex mixture but the reaction could be optimized
by using 2 equiv of iodine to afford a furan derivative
9 (apparently resulting from a hemiketal) and 11-mem-
bered unsaturated lactone 8 (Scheme 3).

In the presence of 3.5 equiv of iodine, 3-atom ring en-
larged lactones 7a–c were isolated as two separable ste-
reoisomers, apparently due to trapping of the incipient
radical either cis or trans to the CH2–I side chain, while
only 2 equiv of iodine (vide supra) furnished the olefinic
lactone 8 as a single isomer.

Remarkably, spirolactones 4 were isolated as single iso-
mers in high yields. This indicates that the relative ste-
reochemistry between the ester and the CH2–I side
chain is the same in precursor hemiketals 2 as in spiro-
lactones 4 and therefore the two stereoisomers in hemi-
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ketal 2b result from the configuration of the hemiketal
OH.

The structures of spirolactones 4 as well as of the ring
enlarged lactones 7 and 8 were elucidated by 1H
NMR, 13C NMR, DEPT, and Cosy experiments as well
as MS. For instance, spirolactone10 4a showed keto as
well as ester carbonyls in the IR and 13C NMR; 1H
NMR indicated the absence of a carboethoxy ethyl
group and DEPT displayed five CH2’s and one CH.
The ring enlarged lactone11 7a indicated the presence
of two ester groups in the 13C NMR and IR, while
DEPT showed six CH2’s, one CH bonded to O and
one Me.
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